Activity Prediction of Schiff Base Compounds using Improved QSAR Models of Cinnamaldehyde Analogues and Derivatives
نویسندگان
چکیده
In past work, QSAR (quantitative structure-activity relationship) models of cinnamaldehyde analogues and derivatives (CADs) have been used to predict the activities of new chemicals based on their mass concentrations, but these approaches are not without shortcomings. Therefore, molar concentrations were used instead of mass concentrations to determine antifungal activity. New QSAR models of CADs against Aspergillus niger and Penicillium citrinum were established, and the molecular design of new CADs was performed. The antifungal properties of the designed CADs were tested, and the experimental Log AR values were in agreement with the predicted Log AR values. The results indicate that the improved QSAR models are more reliable and can be effectively used for CADs molecular design and prediction of the activity of CADs. These findings provide new insight into the development and utilization of cinnamaldehyde compounds.
منابع مشابه
Quantitative structure activity relationship study of inhibitory activities of 5-lipoxygenase and design new compounds by different chemometrics methods
A quantitative structure-activity relationship (QSAR) study was conducted for the prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase. The inhibitory activities of the 1-phenyl[2H]-tetrahydro-triazine-3-one analogues modeled as a function of molecular structures using chemometrics methods such as multiple linear regression (MLR) ...
متن کاملDesign of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship
Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure-activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and Penicillium citrinum (P. c...
متن کاملA QSAR Study of HIV Protease Inhibitors Using Computational Descriptors to Prediction of pki of Cycle Derivatives of Urea
Preventing and reducing the spread of HIV (HIV) has always been a concern in medical science. One of the most common ways to control the virus is using enzyme-blocking drugs. In this study, we attempted to predict the biological activity (PKi) of organic urea derivatives in protease inhibitor compounds using molecular modeling using QSAR (Quantitative Structure Activity Relation), which is the ...
متن کاملApplication of Genetic Algorithms for Pixel Selection in MIA-QSAR Studies on Anti-HIV HEPT Analogues for New Design Derivatives
Quantitative structure-activity relationship (QSAR) analysis has been carried out with a series of 107 anti-HIV HEPT compounds with antiviral activity, which was performed by chemometrics methods. Bi-dimensional images were used to calculate some pixels and multivariate image analysis was applied to QSAR modelling of the anti-HIV potential of HEPT analogues by means of multivariate calibration,...
متن کاملPrediction of IC50 of 2,5-diaminobenzophenone organic derivatives using informatics-aided genetic algorithm
In the present paper, informatics-aided quantitative structure activity relationship (QSAR) models using genetic algorithm-partial least square (GA-PLS), genetic algorithm-Kernel partial least square (KPLS), and Levenberg-Marquardt artificial neural network (LM ANN) approach were constructed to access the antimalarial activity (pIC50) of 2,5-diaminobenzophenone derivatives. Comparison of errors...
متن کامل